In 1900, mathematician David Hilbert famously published 23 as yet unsolved math problems. The problems covered a large swath of math fields. They served as a challenge and inspiration for 20th century mathematicians. I propose taking that same approach to laying out your content units for the year. Most syllabi showcase content via unit titles: … Continue reading Math Syllabus Bootcamp Part 4: Anchor Problems. A Hilbert-ian approach to curriculum mapping

## Math Syllabus Bootcamp Part 3: Norms. What are expectations for quality collaborative work?

(This is Part 3 in a mini-series on constructing a math syllabus. I hope it challenges you to think about possible ways to vision your classroom, even if you don't utilize all the ideas. Check out the previous entries via the links below.) Norms exist in every classroom, whether they are on a placard on … Continue reading Math Syllabus Bootcamp Part 3: Norms. What are expectations for quality collaborative work?

## Math Syllabus Bootcamp Part 2: Smartness. What does it mean to be a mathematician?

In Part 1 of this mini-series, we looked at how we can promote diverse identities in mathematics from the first artifacts students see: you, your syllabus, and your classroom. Here in Part 2, we’ll examine the mathematical habits, behaviors, and skills that ensure students will be able to participate fully. Like with identity, students and … Continue reading Math Syllabus Bootcamp Part 2: Smartness. What does it mean to be a mathematician?

## Math Syllabus Bootcamp Part 1: Identity. Who is a Mathematician?

Part 1: Identity: Who is a mathematician? (Good morning and welcome to Math Syllabus Bootcamp! This is Part One of a five part Emergent Math mini-series. Today’s topic is on how to incorporate and welcome diverse identities from the very outset of the school year. Be sure to check out the other parts of this … Continue reading Math Syllabus Bootcamp Part 1: Identity. Who is a Mathematician?

## Your Math Syllabus Boot Camp

This blog post introduces a new mini-series from Emergent Math: your math syllabus bootcamp. Also, be sure to check out Geoff’s previous mini-series: Routines, Lessons, Problems and Projects. I often stumbled into the school year. August appeared and suddenly I was aware that I needed to get back into a proper working routine. Most of … Continue reading Your Math Syllabus Boot Camp

## A DRAFT rubric to assess the Common Core State Standards of Mathematical Practice

The Common Core Standards of Mathematical Practice (MPs) have been available for a while now. They lay out eight habits that mathematicians embody. They've been instructive in what to teach and how to teach. They've also been helpful in providing a comprehensive vision of what math classrooms can be. MP1. Make sense of problems and … Continue reading A DRAFT rubric to assess the Common Core State Standards of Mathematical Practice

## Where does a letter occur in a word? A matching activity

Whenever and however we come back together as math classes this Fall, we're going to need to spend considerable time building up students' mathematical identities. Chances are students are going to be entering your classroom with a wider array of math learning experiences over the prior six months than ever before. Therefore we need a … Continue reading Where does a letter occur in a word? A matching activity

## Active caring: now more than ever

I don't know jack shit about teaching remotely. There are many, many blog posts and articles that'll inform you of best practices, useful websites, fun apps, sample schedules and the like. The most helpful of which I find to be open and honest reflections on what it's like to teach entirely remotely, unexpectedly, and without … Continue reading Active caring: now more than ever

## How a problem becomes a lesson

Sometimes we overthink it. We (*ahem*) create big curriculum maps full of dynamic problem based lessons created by the most intrepid teachers on the internets. As useful and helpful as these are, the most reliable-to-hit-the-content, easiest-to-plan problems come from stuff that already exists. Textbooks and online problem sets are the most robust source of quality … Continue reading How a problem becomes a lesson

## Transversals Lesson: Street Views

The following Problem Based math lesson covers the concept of transversals crossing parallel lines and their angle relationships. The scenario of the task predicated on needing to determine "safe" and "troublesome" intersections in town. Intersections that are closer to right angles are deemed "safe," while intersections with extreme angles result in limited-vision turns. But that … Continue reading Transversals Lesson: Street Views