*I had the honor of co-designing and MC’ing the first ever PBL Chopped competition at the New Tech Annual Conference in July. While this is typically a blog about math instruction, this experience welcomed all content areas and all grade levels, teachers, principals and instructional coaches. It was an absolute blast and the teams were *incredible*. It’s so fun to be an observer to this cross-curricular design sprint. Below is a recap, followed by a link to additional resources and commentary – geoff*

ST. LOUIS, MO — The only thing more intense than the current of the Mighy Mississip was the sweltering *PBL Kitchen*. Eight teams entered the Steelcase room on an overcast Saturday afternoon hoping to design the “tastiest” of projects based on three mystery “ingredients.” These ingredients came in the form of three randomly selected standards from across the curriculum.

Each team had 20 minutes to design the outline of a PBL unit based on the following standards which were drawn at the time of the competition.

- Natural selection leads to adaptation, that is, to a population dominated by organisms that are anatomically, behaviorally, and physiologically well suited to survive and reproduce in a specific environment. (HS-LS4-3),(HS-LS4-4)
- Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations. For example, rearrange Ohm’s law V = IR to highlight resistance R. (CCSSM.A-CED.A.4)
- Integrate visual information (e.g., in charts, graphs, photographs, videos, or maps) with other information in print and digital texts. (CCSS.ELA-LITERACY.RH.6-8.7)

As soon as the standards were drawn, the first round of the competition began in a flurry of ideation and activity. Teams scribbled on whiteboards provided by Steelcase. Participants. The end of the 20 minutes was punctuated by a “3…. 2….1… Markers down! Cooking time is over, chefs!” Exasperated from the intensity, participants – teachers and principals alike – let out a cry of triumph. While the design of a PBL Unit – with carefully selected and uniform standards – can take hours, competitors had come together to create an engaging, meaningful project in 20 minutes.

Sadly, only three teams could advance to the final round. This proved to be the most difficult part of the competition – for the judges. After some deliberation, looking through the eight project ideas, they identified the three projects that allowed their creators to advance to the final round. At this point, standards were drawn again:

- ELA: Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks, attending to special cases or exceptions defined in the text.
- SS-Geo: Use geospatial and related technologies to create maps to display and explain the spatial patterns of cultural and environmental characteristics.
- Sci: The complex patterns of the changes and the movement of water in the atmosphere, determined by winds, landforms, and ocean temperatures and currents, are major determinants of local weather patterns.

As before, 20 minutes flew by in a flash and the three teams developed PBL Units that would be uniquely engaging and meaningful to their students. They presented to the judges who asked them critical questions to get a sense of the scope of the project and the team’s understanding of the project.

After two rounds of high pressure, minimal time PBL design one team was left standing. The judges – after much deliberation and pained conversations – came to the unanimous conclusion that **Scottsburg New Tech**‘s final project was the one to take them over the finish line. They were announced as the winners at the next morning’s plenary session.

But while Scottsburg got to take home the lovely 2017 NTN PBL Chopped Trophy (which we can only assume is currently being prominently displayed in a proper trophy case), everyone who competed won something. Some teams walked away with a greater understanding and empathy for teachers of other disciplines. Some teams walked away with a greater camaraderie with their peers. Other teams walked away with an actual project that they promised to refine and implement in a cross-curricular experience.

So congrats are in order to the winner, Scottsburg New Tech, but given the creative explosion in the Steelcase room on that Saturday afternoon, congrats are also in order to the thousands of students who will benefit too, from PBL Chopped 2017.

(Note: in addition to the recap here, you can find additional information, commentary, and details on the New Tech Network blog. [link coming soon!])

## Is bad context worse than no context?

In elementary classes we consider it a good thing to be able to move from the abstract to the concrete. We ask students to count and perform arithmetic on objects, even contrived ones. We ask students to group socks, slice pizzas, and describe snowballs. A critical person might suggest these are all examples of pseudo-context, and they’d be right! These are more-or-less contrived scenarios that don’t

reallyrequire the context to get at the math involved. Why do we provide such seemingly inessential context? I’m venturing a little far away from my area of expertise here, but I’d guess it’s because it helps kids understand the math concept to have a concrete model of that concept in their heads.My question is this: in secondary classrooms, is there inherent value in linking an abstract concept to an actualized context? Even if the context is contrived?

I mean, yeah that’s bad. Comically and tragically bad. It doesn’t do anything to enhance understanding. I’d say the context actually

hindersunderstanding.The thickness of an ice sculpture dragon’s wing?That’s about three bridges too far.But what about a slightly less convoluted, but also-contrived, example. Say:

This problem is still most certainly contrived: dimensions of tanks aren’t often given in terms of

x. I’m not even suggesting this problem will engender immediate, massive engagement, but it might help students create a mental model of what’s going on with a third degree polynomial. Or at least the context allows students to affix understanding of the x- and y-axes once they create the graph of the volume of this tank.We provide similarly pseudo-contextual in elementary classrooms in order to enhance understanding of arithmetic and geometry.

From Burns’ “About Teaching Mathematics”

Of course, we also compliment such problems with manipulatives, games, play, and discourse, which secondary math classrooms often lack. In the best elementary classrooms we don’t

justprovide students with that single task. We provide others, in addition to the pure abstract tasks such as puzzles or number talks.Perhaps the true sin of pseudo-context is that it can be the prevailing task model, rather than one tool in a teacher’s task toolbox. In secondary math classrooms pseudo-contextual problems are offered as

themotivation for the math, instead of exercises to create models and nothing more.(See also: Michael’s blog post on Context and Modeling)