Who doesn’t want to relive the 2000 election? (Stats problem)

We’ll take a slight detour from my college readiness manifesto (that hasn’t even really started yet) to bring you the following election-related problem. Then again, this problem was lifted directly from a graduate level Statistics class, so this might give some insight into what college readiness could potentially look like. Hadn’t thought of that. Enjoy!

Artifact

Here’s a (non-abridged) problem I received in my graduate level stats class last week (due tomorrow! hope it’s ok that I’m posting it!). I think it’s a great problem and one that’s certainly prevalent around this time:

from The Statistical Sleuth, Ramsey & Schafer, Ed. 2)

1. (SS#8.25) Presidential Election of 2000 

The US presidential election of November 7, 2000, was one of the closest in history. As returns were counted on election night it became clear that the outcome in the state of Florida would determine the next president. At one point in the evening, television networks projected that the state was carried by the Democratic nominee, Al Gore, but a retraction of the projection followed a few hours later. Then, early in the morning of November 8, the networks projected that the Republican nominee, George W. Bush, had carried Florida and won the presidency. Gore called Bush to concede. On the way to his concession speech, Gore then called Bush to retract that concession. When the roughly 6 million Florida votes had been counted, Bush was shown to be leading by only 1,738, and the narrow margin triggered an automatic recount. The recount, completed in the evening of November 9, showed Bush’s lead to be less than 400.

Meanwhile, angry Democratic voters in Palm Beach County complained that a confusing “butterfly” ballot in their county caused them to accidentally vote for the Reform Party candidate Pat Buchanan instead of Gore. See the ballot below. You might understand how one could accidentally vote for Buchanan instead of Gore because Gore’s name is the second listed on the left side, but his “bubble” is the third one. Two pieces of evidence supported the claim of voter confusion. First, Buchanan had an unusually high percentage of the vote in that county. Second, there were also an unusually large number of ballots discarded during counting because voters had marked two circles (possibly by inadvertently voting for Buchanan and then trying to correct the mistake by then voting for Gore).

Make a scatterplot of the data, with X = # of votes for Bush and Y = # of votes for Buchanan. What evidence is there that Buchanan received more votes than expected in Palm Beach County? Analyze the data without Palm Beach County to obtain an appropriate regression model fit. Obtain a 95% prediction interval for the number of Buchanan votes in Palm Beach County from this fitted model (assuming that the relationship between X and Y is the same in this county as the others). If it is assumed that Buchanan’s actual count contains a number of votes intended for Gore, what can be said about the likely size of this number from the prediction interval?

Why couldn’t a similar problem be asked in a HS Stats class? Maybe modified, but seriously, why not? And especially why not now, in a year divisible by four (Summer Olympic and presidential election years)? The problems a bit wordy though. Let’s try this:

Artifact, reworked:

The US presidential election of November 7, 2000, was one of the closest in history. As returns were counted on election night it became clear that the outcome in the state of Florida would determine the next president. When the roughly 6 million Florida votes had been counted, Bush was shown to be leading by only 1,738, and the narrow margin triggered an automatic recount. The recount, completed in the evening of November 9, showed Bush’s lead to be less than 400.

Meanwhile, angry Democratic voters in Palm Beach County complained that a confusing “butterfly” ballot in their county caused them to accidentally vote for the Reform Party candidate Pat Buchanan instead of Gore. See the ballot below.

Guiding Questions

  • How could we use statistics to determine whether or not the “butterfly” ballot confused voters?
  • How big of an outlier was Palm Beach county?
  • Had the ballot been more traditional, can we predict the outcome of the Florida electoral votes (and presumably, the 2000 election?).
  • Is there a model of sorts we could employ to detect such anomalies in the future?
  • While we’re at it, what’s up with Dade County over there?

Suggested activities

  • Make a scatterplot and a linear fit and be, like, DUH, something was whack in Palm Beach county. (data of Bush votes and Buchanan votes by countyare at the bottom of this post)
  • Socratic discussion on outliers, not to be confused with Outliers by Malcolm Gladwell.
  • Workshops on confidence intervals, standard deviation and the like.
  • What does the line of best fit look like with and without Palm Beach? And what might that tell us about the voting discrepancies in Palm Beach?

Attempted solution

I’m not going to post my response to the problem prompt, because it may violate academic honesty or something. But I’ll post a scatterplot of Bush/Buchanan votes by county and leave it at that.

Data: election2000

This entry was posted in probability, statistics, tasks. Bookmark the permalink.

2 Responses to Who doesn’t want to relive the 2000 election? (Stats problem)

  1. Pingback: Revisiting the revisitation of the 2000 election | emergent math

  2. Pingback: Portfolio Problems: Rebuilding Assessment with Rich Tasks | emergent math

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s